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Abstract

Although subgrid-scaie models of similarity type are insufficiently dissipative for

practical applications to large-eddy simulation, in recently published a priori analyses,
they perform remarkably well in the sense of correlating highly against exact residual _ _

stresses. Here, Taylor-series expansions of residual stress are exploited to explain the

observed behavior and "success" of similarity models. Until very recently, little atten-

tion has been given to issues related to the convergence of such expansions. Here, we

re-express the convergence criterion of Vasilyev et al. [,1. Comput. Phys., 146 (1998)]

in terms of the transfer function and the wavenumber cutoff of the grid filter.
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1 Introduction

In contrast to direct numerical simuIstion(DNS), in which alt energetic scales of motion are

resolved on a fine grid, in large-eddy, simulation (LES)_ the spatially filtered Navier-Stokes

equations (FNSE) are solved numerically on a relatively coarse grid. For incompressible flow,

and in tensor notation, the FNSE are given by . _4 _ .

_k

ax-== 0 (1)

_k a(_) _+ 1 _Uk +_r__-- + _ = a_ f,,a,-_;_ _ .__. (2)
. - } -

where u_ is the velocity vectoL p is the pressure, and _-_ _the subgrid-scale (SGS) stress

tensor (or reSidual-stress tensor) defined exactly as

Here overlines denote grid-filtered quantities, and Re is the Reynolds number.

(3)

The residual-stress tensor incorporates the effects of the unresolved scales of motion upon

the resolved scales. It is customary in LES to model these effects, for which there exists a

variety of possible models. In 1991, Germano et al. [1] introduced the concept of dynamic

modeling, which exploits the resolved-turbulent-stress tensor f_j, a computable quantity that

is extracted by applying an explicit secondary filter-the test filter-to the resolved velocity

fields as follows:

£k, =- fi_ fi, - _ik"_, (4)

Here hats denote test-filtered quantities. In general, the test- and grid-filter widths, _l and

A respectively, may differ. For later convenience, we denote their ratio by r = A/A.

Recently, interest in SGS models of similarity type (e.g., Liu et al. [2], Stolz and Adams

[3], and Pruett and Adams [4]) has revived (despite the fact that these models are typically

insufficiently dissipative for stand-alone applications to LES). Under certain conditions, re-

markably high correlations between _'_l and £ki have been observed in a priori analyses based



on experimental (Liu et al. [2]) and computational (Pruett and Adams [4]) data. On the

basis of their observations, Liu et al. [2] propose the stress,similarity model

Tkl _ CLf_kl (5)

where Cn is simply a constant.

In this paper, we exploit Taylor-series expansions of the grid- and test-filter operators to

analyze the relationship between the tensors _'_l and £k_ and to optimize the value :of cL in

Eq. 5. The convergence properties of such expansions are subtle, and attention is devoted

herein to establish a criterion for convergence. For simplicity, we apply filtering only in

the x direction and suppress the y and z coordinates and the time t. However, numerical

experiments (Pruett and Adams [4]) suggest that the results carry over to multi-dimensional

filters.

2 Taylor-Series Analyses

Although the use of fixed-width filters is common in LES, in our judgment, this is an ill-

advised practice that usually leads to the contamination of the SGS dissipation by the

truncation error of the numerical scheme. Recently, the utility of tunable (one-parameter)

filters has been recognized (e.g., Vasilyev et al. [6] and Pruett and Adams [4]). One-

parameter filters permit the filter width /x (or preferably for this work, the wavenumber

cutoff kc) to be specified independently of the grid increment Ax. In our view, kc should

be specified on the basis of physical considerations; that , is, the cutoff should lie in the

inertial range of the Kolmogorov spectrum. On the other hand, Ax should be determined

by numerical considerations; that is, by the grid resolution necessary to resolve the smallest

eddies for the numerical scheme of choice. The d]mensionless product ac -- kc/Xx defines the

cutoff parameter to remove the degree of ar_trariness. To this end, we exploit one-parameter

filters of Pade type, the details of which are relegated to the Appendix.

The following discussion applies to a priori analyses, in which DNS data are filtered to
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extract the exact residual stresses and their modeled c_arts. By implication, in this

section Az -- AZDNS. As discussed in the Appendix, a discretefiltercan be represented by

a Taylor-seriesexpansion in the grid increment Ax. For example, if_k isa filteredvelocity

field,then

_(x)= _(x)+ a_Cx)_x+ a2_(_)__ " '+ a3_(x)_ + ... (6)

Here, primes denote (partial)derivativeswith respect to z. For notational simplicity,the

factorialsassociated with the Taylor expansion have been absorbed into the coefficientsaj.
.i : . i

As shown in the Appendix, the Taylor se_es of a filterimpliesitstransferfunction and vice

versa. In general,a filterissaid to be of order m ifthe firstnon-vanishing coefficientof its

Taylor seriesis am. By applYing Eq. 6 to Eq. 3, we obtain a Taylor seriesfor the residual

stress,namely . _ _

_,= (a_ 2_)_x _+ (al_ ' " ' "- - 3a3)(uh_,+ u,_)Ax+ ... (7)

Because the coefficients aj depend implicitly upon ac, it is useful to regard r,t = _'kl(C_c). As

the tensor _l arises solely from the quadratic nonlinearity df_he Navier-Stokes _ations, it

is quadratic at leading order in Az, provided that the filter ia of either.first- or second-order.

On the other hand, if the filter is of order m > 2, then _'kl is of leading order m.

With the help of Mathematic.a, a similar expansion of £tl leads to

£,,= (_1-_<r2A=2 + (_,2_ 2a_r2+a_er3- 3a3ra)(_i,<'+ _,u,)Ax'" a+...(8)

where the testand gridfiltersdifferonly in theirrespectivewidths, whose ratioisr. In (pre-

ferred)terms of g_rid-and test-filtercuto_' 0_c)_ and (kc)T,respectively,r = (k_)G/(kc)T.

Clearly,£,_ £,_(ac,r).By comparing Eq. 7 and Eq. 8, we conclude that the SGS stresses

are approximated to leading order by

_ _ (9)
• _._ _ "_

whereby cz = 1/r _ in Eq. 5. How good is the approximation? From Eqs. 7 and 8, we obtain

the approximation error

£_ _ , . , ,, s (10)E_,(c_c,r) _- _'_, - _ -- [3as(r- 1)+ a_a_(3-r)--ai] (uku, + u,u_)Az +...
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from which we conclude the following:

1. If the filter is of either first- or second-order in Ax, then the approximation error

(Eq. 10) is of higher order (O(Ax3)) than is the subgrid-scale stress (O(Ax2)), and

the approximation could be accurate provided that there is separation between the

contributions at various orders (a topic discussed shortly).

2. If the filter is of order two (al - 0, a2 _0)then

t # * # 3s,,= 3a_(r- 1)(u,_, + _,_k)/x= + ... (11)

3. Although r - 1 is precluded in LES for reasons to be addressed shortly, r -I is

optimal for a priori analyses because, for second-order filters, the leading-order error

vanishes.

4. The approximation that results from the optimality condition r - 1 is simply the

scale-similarity model proposed by Bardina et al. [5], namely r_t _ _l - _--_t.

Whenever the grid and test filters differ in their Taylor coefficients, the situation is

somewhat more complicated. Here, we presume that the grid and test filters are each of

second order and symmetric, in which case

" _ a,,,c:)(=)A:e+ ... (12)r,k(=) = u,,(x)+ a2_,,,(x)e,=+

,:,,,(=)= ,,,,(=)+ _,_(:,:)A=_+ b,,.,(_')C=)A='+ ...

Applying Eq. 12 to Eq. 3, we obtain

ii i i

l # 2 II It"rkt "- -2a2ukutA:r + [(4 - 6a4)(u_,u_ ) - 4a4(u'ku_ s) + u;'u,(S))lAx 4 + O(A:r e) (13)

Similarly, from Eqs. 12 and 4, we derive '

_kt = -2b2u_u_ Ax2 + [(b_ - 6b4)(ugu_') -(4b4 + 2a262)(u_ 3) + _U(k3))mX 4 "Jr" o(mx 6) (14)

A comparison of Eqs. 14 and 13 reveals the following approximation to be correct to leading

order:

a2
r_,_ v-£k, (15)

02
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If the grid and test filters are identical (bj = aj) then a2/b2 - 1, in which case most of the

leading-order error drops out to yield

= - = + + (16)

By either approach, we conclude that the use of identical grid and test filters should produce

optimal results in a priori analyses.

The present analysis corroborates and provides an explanation for the observations of

Liu et al. [2] and Pruett and Adams [4], whose a priori analyses were based on experimental

and computational data, respectively. To be specific, Liu et al. [2] observe negligible cor-

relations between the residual stresses and their Smagorinsky-modeled counterparts when

using spectral filters, which act with exponential order. Our results suggest that, because the

Smagorinsky model is of second-order in Ax, the model is appropriate only in the context of

first- or second-order grid filters. M_r, for spatial top-hat filters (which are of second

order), Liu et al. [2] observe the highest cor_lations between _'kt and £hl for r --- 1, which we

have shown to be optimal. In a priori analyses from DNS of isotropic turbulence, Pruett and

Adams [4] observe correlations of the form C(1"_, £_1) of nearly unity whenever the filter is

weakly to moderately dissipative (_r/2 _< ac < lr) and r - 1. As the dissipation increases, the

correlation coefficient diminishes gradually, but it remains surprisingly high (C > 0.8) even

for quite dissipative filters (ac _-, 0.45). Furthermore, they observe correlations to degrade

somewhat as r deviates substantially from unity.

3 Taylor-Series Convergence
L.

Although Taylor-series analysis is frequently exploi_ to develop or analyze S_tress mod-

els (e.g., Rogallo and Moin [7] and Horiuti [8]), the approach has sometimes been criticized

because of uncertain convergence, an issue that has received little attention until the recent

work of'Vasilyev et al. [6]. In practicel Taylor_seri:e_ approximation is most useful if the

leading-order error is relatively small, which in turn requires that the series converges fairly

rapidly. Here, for completeness, we draw on the work of Vasilyev et al. [6] and re-express
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their convergence criterion in terms of the transfer function and wavenumber cutoff of the

grid filter.

: Let u denote one of the three velocity components, and, for simplicity, presume that u

is periodic on I-It, lr] and contains no wavenumbers higher than kmax, a finite integer such

that kmax > k,7, the Kolmogorov wavenumber. It will be useful in later discussion to think

of kmax as the wavenumber cutoff for full resolution of quadratic nonlinearities in DNS, in

which case, for a spectral numerical scheme :. _

kmaXAXDNS -- lr !_ (17)

Equation 17 is simply the Nyquist criterion of signal processing. Given the assumptions

above, the velocity field and its derivatives may be expanded as finite Fourier series; that is,

kmax krnax

u(x)= _ Ute _kz and u(m)(x) - __, (I.k)'nU_e _z (18)
k=-kmax k=-kmax

where _ = _f_', and Uk is the k-th (complex) Fourier coefficient of u. Slightly adapting

Vasilyev et al. [6] (who also assume finite kmax), we obtain a bound on the magnitude of

the m-th _derivative of u, namely

_gmax

_< Ikl"'lVkl
k---kmax

\ k=l /

( k2'na_ :_ 1/2 ,n ] Ekmax
= v/_ \_m'+'l'] = kmaXVm-+- _

(19)

where HSlder's inequality is used to proceed from the first to the second step of Eq. 19, and

_r_ IUkl 2 is the total "energy" as per Vasilyev et al. [6]. Recall from Eq. 6where Z = Z.#k=-kmax

that
OO

_(x)-- _-_amU(m)(x)Ax _ (ao- 1) (20)
m=O
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By Eq. 19 i _

oo oo _/ Ekmax Ax mE I_"(")(_)_"1-< _ la_tv__(kmax ) (2t)
m----0 m-----0

Thus, the series in Eq. 20 is absolutely convergent prodded that the series on the right-hand

side above (Eq, 21) converges. By .the ratio test, the power series in kmaxAx above converges

provided that

[_+1[
rim kmaxAz < 1 (22)

_'-'® I_1
As discussed in the Appendix, the coefficients am depend on derivatives of the transfer

function H(c_, c_c) of the filter as follows:

_Ca,) = Hcf)(0,_o) •
(m!)_- (23)

From Eels. 17, 22, and 23, we obtain the following convergence criterion in terms of the filter's

transfer function and itscutoff:

lira Ir tu(,"+_)(0,_o)1

For filterswhose stencilsand coefficientsare symmetric, the &ppropria&e criteriaare

(24)

¢21_,,+21 _- I_C_+2)(0,o,o)1
m-,® Io_1 < 1 or lira (2m+2)C2m+1) IH(_)(0,oo)1< 1 (25)

By the Cauchy product theorem, if the convergence of the Taylor series for _/k is guaranteed

by Eq. 24 or Eq. 25, then the series _//k_ also converges. Moreover, by definition, kmax

is sufficiently large so that quadratic nonlinearities are well-resolved in DNS. It follows that

if the series for _k converges, so must that for R'p_. These two additional considerations

guarantee that the Taylor series for _'hl (Eq. 3) converges provided Eel. 24 or Eq. 25 is

satisfied. For symmetric, fully explicit filters (see the terminology in the Appendix), Eq. 25

holds for all values of the cutoff parameter such that the off-center weights remain of the

samemgu.

We now specializethe analysisto the symmetric, second-order Pade filter,whose transfer

function H(a, ac) isgiven in Eq. 34 and Fig. i of the Appendix. For thisclassoffilters,the

dependence upon c_cof the convergence criterionissubtle. Originally,we conjectured that

8
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m 0 I

a2,, 1 0.75

la_.,,+,_l/l_.,I NA 0.75

2 3 4 5

0.4375 0.2521 0.1453 0.0838

0.5833 0.5?62 0.5766 0.5766

Table 1: Taylor-series coefficients for Pade filter with ac = Ir/3.

Eq. 25 holds at leastforall_r/2< ac _<_r.However, attempts at formal proof failed.Subse-

quent numerical experimentation over a range of cutoffssuggests (but does not guarantee)

that Eq. 25 issatisfiedapproximately for -0.1 < ( = - cos(at) _< I, and, as a general rule

of thumb, the more dissipativethe filter(the smaller ac), the slower the convergence. (This

isnot entirelyaccurate,but a truer statement istoo detailedfor the present forum.)

.Here, we willbe content to consider three specificcutoffvalues,two forwhich the conver-

gence criterionEq. 25 issatisfied,and one for which itisnot. First,for_DN$, ac = It.From

Eq. 34, H(a, lr)= I, independently of a. Consequently, _ = uk and rki(_r)= _/_t- _ =

ukul-ukul = 0. Similarly, for r = 1, £kl(lr, 1) = ukul--Ukul = _l--_;i_ = UkUi--UkUl = O.

As expected, in the DNS limit, the filters turn off, the residual stress vanishes, the resolved

turbulent stress also vanishes (for r = 1), and the resulting Bardina model _ trivially exact.

Second, for the special case ac = _r/2, [H(lm)(0, lr/2)[ = 1/2 for all m > 0, in which case

Eq. 25 is clearly satisfied. Third, we consider ac = _r/3 (_ = -0.5), for which Table 1

presents the first few coefficients aim and their ratios. Although the coefficients eventually

diminish at an apparently constant rate, that rate is too slow to satisfy Eq. 25. For suffi-

ciently dissipative Pade filters, the Taylor coefficients apparently grow at an asymptotically

constant rate.

Returning briefly to the (convergent) case for which c_c= _r/2,we have

1_,- 2 (26)

and

EkiC rl2,1) = "rk,- £ki :l)+ u u(,3))Az'* + ... (27)

Careful examination Of Eqs. 26 and 27 reveals that the leading order error term above

could be large relative to the magnitude of the residual stress. Indeed, criterion Eq. 25
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guarantees only that the terms of Taylor expansions eventually diminish, not necessarily

that the leading order approximatio n error is-small. One might expect that higher order

corrections to the expansion for £ki would be necessary before the similarity model (F,q. 5)

is even approximately valid. (See, for example, the generalized similarity model of Stolz

and Adams [3].) In this light, that correlations C(r_t, £kt) are typically observed to be

high (Pruett and Adams [4]) even for quite dissipative filters (whose Taylor series may even

diverge) is at first intriguing. With regard to LES, there are three ameliorating factors. First,

in the inertial subrange, the Fourier coefficients Uh decayas k -5/6 in amplitude. Second_ for

kmax _> k _> k_, the Fourier coefficients decay even more rapidly due to the effectiveness
........ !:

of viscosity. Neither factor has been taken into account. Third and dominant, the bound

expressed by Eq.'19 is extremely pessimistic; equality holds only when all Fourier components

align in phase, an unlikely scenario in a turbulent flow.- :

4 LES

Finally, we turn to an implication of our analysis to LES. For a priori analyses, there is no

prohibition on the use of identical test and grid filters. However, r = 1 is d_lowed in LES

with secondary filtering, as the following line Of reasoning suggests (and as also noted _in Liu

et al. [2]). For LES, Az = AZLES. Rec_ that (kc)G and (kc)T denote the grid- and test-

filter cutoffs, respectively, where we now presume (kc)T _< (kc)G. By design, once (kc)G is

established from physical considerations, then (for a spectral numerical scheme) the Nyquist

criterion (kc)CAZL_ -- (ac)6 _. 1r establishes the appropriate grid increment AZL_.S. By

definition, (k_)TAXLSS = (a_)T, Thus,

(kc)G_ _" > 1. (28)
=

In LES, it is common to use rLES = 2. Attempts to use rL_.S -" 1 yield (ac)T = rr, which

turns off the secondary filter. However, at least in theory, there is no reason why similarity

models with r > 1 are not viable for LES. _
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5 Conclusions

In conclusion,Taylor-seriesexi_ansionsof residualstressard_tfsetulfordeveloping and analyz-

ing SGS models for LES. In particular,Taylor-seriesanalysisrevealsthe explicitdependence

of the residualstresson the grid filter,and thereby revealspotential model-filterinconsis-

tencies.Moreover, such analysisunderscores the desirabilityof one-parameter filters,whose

cutoffscan be tuned independently of grid resolution.The degree of usefulnessof Taylor-

seriesexpansions,however, depends ultimately on how rapidlythe seriesconverge_ A rigorous

convergence criterionhas been developed that isexpressed in terms of the transferfunction

and wavenumber cutoffof the grid filter.As a rule of thumb, the more (less)dissigativethe

filter,the slower (faster)the convergence. Taylor-seriesexpansions have then been applied

to the analysisof the similaritymodels of Bardina [5]and of Liu et al. [2].The analysis

corroborates and appears to explain a number of observations regarding such models (e.g.,

Liu et al. [2]and Pruett and Adams [4]).In a priorianalyses,similaritymodels typically

perform far better than expected based on the mathematical analysisherein,which suggests

that a refinedanalysis isboth desirableand possible.

Acknowledgments

For helpfuldiscussions,the firstauthor ismost gratefulto Drs. Klaus Adams of ETH, Ziirich,

Garry Pantelis of ANSTO, Australia,and Ugo Piomelli of the University of Maryland.

I i

11



Appendix: One-Parameter Pade Filters

Following Lele [9],a discrete,second-order, one-parameter (_) Pade filterisconstructed by

consideringthe symmetric pointwise scheme

k

¢__1-1-_-l-¢_+1=af_+2(fi_1-}-fi+l) _ ; (i 1,2,...n 1) .... (29)

Various treatments are possible for the boundary nodes i- 0 and i -n. Howevm+,_ the

simplest tack is to impose no _tering at the boundaries. In matrix form Mf - Ef, where

M and E are tridiagonai.

The action of the filter above on the single Fourier mode exp(_kx) yields the complex

tmnsler_nct_on

a + bcos(a)

= 1+ (3o)
where a kAz. For Lapplications to LES, we consider only low'_8 filters, for which

H(0) - 1 and H(Ir) -- 0. In combination, these constraints imply b = a = 0.5 + _.

Admissible values of the parameter are -+ < _ _< ½. Whenever _ - 0, M is the identity

matrix, and the filter is fully e_licit. The fully explicit case corresponds to a discrete top-hat

filter with weights at adjacent nodes of [1/4, 1/2, 1/4]. Otherwise, the filter is implicit. The

value _ - ½ yields M = E, which turns off the filter. For all _missibte'parameter values,

the matrices M and E are diagonally dominant with positive diagonal elements, in which

case the filter operator L - M-tE is positive semidefinite.

By analogy to discrete differentiation operators, to each discrete filter is associated a

Taylor-series expansion of the form

f(zi) -- f(x,) "4-atf'(x,)Ax --I-a2f"(:r,i)A:r, 2 + aafm(xi)Ax a + ... (31)

Here, for notational simplicity, the factorials in the Taylor series have been absorbed into

the coefficients aj. By applying the Taylor-series representation of the filter to exp(_kz_), we

obtain the corresponding Taylor series of the transfer function, namely

H(c_) - 1 + a1(_c_)+ a2(_) 2 + as(u_)3+ ... (32)

12



Evaluating successive derivatives of Eq. 32 at c_ = 0 yields

am = H(m)(0) (33)
(rn!)_m

Thus, the Taylor series implies the transfer function and _ce versa. In general, a filter is of

order m if its first non-vanishing Taylor coemcient is am. Filters associated with symmetric

stencils are of even order with purely real transfer functions. In particular, the Pade scheme

above is of second order (provided _ _ 0.5).

The coefficients of the Taylor series of Eq. 31 are functions of the parameter. Toquan-

tifythisdependence for the Pade filter,we (unconventionally) define ac, the dimensionless

wavenumber cutoff,such that ] - H(ac), whereby

H(a,ao)= (i-cosao)(1+ cosa)
2(I-cosaccosa) (34)

Figure 1 compares the transfer functions of the Pade filter for selected values of c_c.
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Figure 1: Transfer function of one-parameter family of secondorder low-pass filters of Pade

type for selected values of dimensionless wavenumber cutoff ac.
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